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The premixed flame in uniform straining flow 
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Characteristics of the pre ixed flame in uniform straining flow are investigated by 
the technique of activation-energy asymptotics. An inverse method is used, which 
avoids some of the restrictions of previous analyses. It is shown that this method 
recovers known results for adiabatic flames. New results for flames with heat loss are 
obtained, and it is shown that, in the presence of finite heat loss, straining can extinguish 
flames. A stability analysis shows that straining can suppress the cellular instability 
of flames with Lewis number less than unity. Strain can produce instability of flames 
with Lewis number greater than unity. A comparison shows quite good agreement 
between theoretical deductions and experimental observations of Ishizuka, Miyasaka 
& Law (1981). 
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1. Introduction 
Recent interest in efficient and clean combustion has led to increasing use of 

controlled combustion processes (Weinberg 1974). Direct control can be achieved if 
fuel and oxidizer are premixed prior to combustion. Future development of premixed 
combustors will be aided by improved understanding of the characteristics of pre- 
mixed flames, especially flames stabilized (i.e. equilibrated) in fluid flows. 

Flames often are stabilized in the wake of vortex-shedding bluff bodies, and are 
embedded in turbulent flow. For these reasons, it is important to study the effects 
of flow gradients on combustion and on the stability of flames. The present paper 
investigates the effects of uniform straining on a steady (laminar) flame. The relevance 
of such analysis to flames in turbulence has been discussed by Klimov (1963) and by 
Clavin & Williams (1979); its relevance to flames stabilized in front of bluff bodies is 
described by Buckmaster (1979). Flames in combustors that might be used in jet 
engines are equilibrated in straining flow, and their flashback appears, in some circum- 
stances, to be connected with an instability of the flame (Keller et al. 1981). 

Here, activation-energy asymptotics will be used to address the problems of locating 
the steady flame and examining its stability. Activation-energy asymptotics are 
expounded in Ludford (1977a, b). Essentially, the flame is treated as an interface 
within which reactants are consumed and heat is released. Reactants are convected, 
and diffuse, toward the interface, and heat liberated by combustion is transported 
away from it. The combustion processes appear as discontinuities in heat and reactant 
fluxes across the flame; jump conditions for this discontinuity are derived through 
asymptotic analysis of the combustion processes occurring within the interface. 

The thin-flame model, formalized by activation-energy asymptotics, was first 
applied to premixed flames in straining flow by Klimov (1963). A more recent analysis 
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by Buckmaster (1979) extends considerably the work of Klimov. Sivashinsky (1976) 
applied a general thin-flame equation to flames in straining flow. His model ignores 
the effect of straining on the structure of the pre-heat zone; however, the model shows 
some qualitatively correct behaviour. 

When considering mixtures with Lewis number L different from unity, or flames 
with heat loss, two methods of analysis can be distinguished: the direct approach, 
used by Buckmaster (1979), and the inverse approach, used here. In the direct 
approach, upstream conditions are prescribed and flame properties are calculated. 
In  the inverse approach, prescription of one of the upstream conditions is replaced 
by prescription of the flame temperature. 

It is advantageous, when doing activation-energy asymptotics, to scale tempera- 
tures on the flame temperature. However, for prescribed upstream temperature and 
fuel concentration, this flame temperature is unknown a priori - unless the Lewis 
number is unity and there is no heat loss. Therefore, in the direct approach one has 
to resort to scaling on the L = 1, adiabatic flame temperature. As might be expected, 
scaling on this temperature produces non-uniformity in the asymptotic analysis, 
which is therefore restricted to L asymptotically near to unity, and to asymptotically 
small heat losses: this scaling also complicates the analysis. 

If, instead of prescribing upstream conditions only, one prescribes upstream 
temperature and flame temperature, letting the upstream fuel concentration be 
determined by the analysis, it becomes possible to scale the asymptotics correctly. 
The solution to this inverse problem (i.e. find the fuel supply required to achieve a 
given flame temperature) can be rescaled to obtain a solution to the direct problem. 
We will show that, by rescaling the solution to the inverse problem, Buckmaster’s 
results for adiabatic flames are recovered, without restrictions on L. Further, we 
will extend previous, adiabatic analyses by allowing downstream heat loss. 

It was shown by Sivashinsky (1976) and by Buckmaster (1979) that flames can be 
extinguished by straining if L is sufficiently greater than unity. It will be shown here 
that straining can extinguish flames more effectively when there is a finite amount of 
heat loss. (The extinction of diffusion flames by straining was described by Liiian 
(1974).) 

Our consideration of the stability of planar flames in straining flow shows that with 
L < 1 straining has a stabilizing effect. In  the absence of straining, instability occurs 
first a t  very long wavelengths and leads to cellular forms (Sivashinsky 1977). Straining 
eliminates this long-wave instability. 

In uniform flow, gaseous flames with L > 1 are stable in the diffusional-thermal 
sense, and will not become cellular. (Sivashinsky (1977) found an oscillatory, non- 
cellular instability for L > 1, but concluded that it could not appear in typical gaseous 
flames.) However, in flow with a large enough rate of strain, a long-wave instability 
of these flames appears. This instability could lead to increased flame temperature, or 
to extinction of the flame. 

Recently, the suppression by straining of cellular instability of flames with L < 1 
was shown experimentally by Ishizuka, Miyasaka 6 Law (1981). They also studied 
extinction and heat-loss effects on flames in straining flow. Some theoretical support 
for their experimental findings was offered by Law and Sivashinsky (unpublished 
note). The present study was done independently of that by Law and co-workers, 
but there are striking coincidences between the two. The present findings will be 
compared to observations of Ishizuka et al. 
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FIGURE 1. Illustration of straining flow with flame at z = -q. 

In  this paper we will use the constant-density, constant-property approximation. 
Williams (1975) notes that realistic property variations can be included in the steady- 
flame analysis through a suitable co-ordinate transformation. To do this conveniently, 
however, might require ignoring flame-generated vorticity. 

The constant-density approximation is crucial to the present stability analysis; 
admission of density perturbations would severely complicate the stability equation. 
However, physical considerations suggest that allowing density perturbations would 
not qualitatively alter our deductions. Indeed, the good agreement between our analy- 
sis and the experiments by Ishizuka et al. is an indication that much of the relevant 
physics has been retained. 

2. Analysis of the steady flame 
The fundamental problem of steady-state flame theory is to locate the equilibrium 

position of a flame front in a mean flow; incorporating heat loss to surfaces where 
relevant. This problem can be formulated as a quite intricate free-boundary problem 
(Buckmaster 1979). Here we consider the simplest form of that problem; the flame is 
stabilized in a uniform straining flow. One knows, a priori, that the flame will be 
parallel to the axis of strain and perpendicular to the axis of compression; this is 
illustrated in figure 1. In the body of this paper the flow is taken to be planar. Appendix 
A treats the axisymmetric case. 

Consider the combustion reaction to be 

5 + Yz + products, ( 1 )  
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with & being fuel and oxidizer. If far upstream of the flame Yl - Yz = D > 0, and Yl 
and Y2 have equal diffusivity, then Yl = Yz + D everywhere. One, therefore, needs only 
to follow the single reactant variable Y2 as it is transported to, and consumed within, 
the flame. 

We now pose the inverse problem: given the flame temperature T,, the upstream 
temperature T-,, and the downstream temperature T,, determine the flame position 
and fuel supply concentration as functions of straining rate. Let the straining rate be 
y, Q and C, be the heat of combustion and heat capacity of flame gases, K and h be the 
thermal and species diffusivities, and uL be the usual laminar flame speed (which will 
be described later), evaluated at the flame temperature. Our analysis will be done for 
the non-dimensional quantities 

Here tildes indicate dimensional variables. Because T* has been used in this non- 
dimensionalization, we will not have to make the common restrictions that L and 
8, be (asymptotically) near to unity. 

Consistent with the thin-flame assumption, outside the thin reaction zone the 
thermal and species convection-diffusion equations are.' 

for the straining flow, U = - 2 4 2 ,  V = 2$y of figure 1.  L is the Lewis number defined 
in ( 2 ) .  Figure 1 shows two ways in which a uniform straining flow can be established: 
the flow can either stagnate at  a wall, or it can be formed by the intersection of two 
counter-flowing streams. For preciseness, the latter case will be considered here. 

For a steady flame, perpendicular to the x-axis, the first two terms of (3) vanish; 
0 and Y are then functions of x only. The boundary conditions in this case are 0 +- 0 
as x + -m,8 = 1 at x = - x i ,  8 -+ 8, as x -+ 00, and Y -+ 0 as xf  - x f ;  the last condition 
ensures that the combustion is complete to lowest order. The flame position - xi is to 
be determined, as is the supply condition Y-,. These quantities must be chosen 
such that certain jump conditions across the flame front, which will be derived next, 
are satisfied. 

Jump conditions 

This derivation of jump conditions uses the method of activation-energy asymptotics, 
and closely follows Ludford (1977b, 3 4). Rather lengthy and formal derivations are 
available (e.g. Matkowsky & Sivashinsky 1979); we will be brief and informal. 

The flame front is a plane of heat release and reactant consumption. Hence, one 
expects the derivatives of 8 and Y to be discontinuous there, while 8 and Y themselves 
are continuous. Denoting by [ 3 the jump in the bracketed term at - x f ,  we have, 
immediately, 

(4) [8] = [ Y ]  = 0. 
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Now, if the activation temperature T, ( =  activation enesgy/gas constant) is large, 
the region of combustion is thin; our use of jump conditions to represent the flame is 
valid as T, + ao. The dimensionless parameter 6 = Ti/TJT* - T-w) is the usual small 
parameter of activation-energy asymptotics; it  ranges typically between 0.06 and 
0.1. Introducing the independent variable y = (x + xi)/6 enables one to look inside the 
thin flame, with a view to finding the net rate of heat release; which then determines 
the jump in temperature and concentration derivatives. 

On examination, it becomes clear that within the flame the processes of heat 
release by combustion, and molecular conduction of heat from the flame are in balance; 
because of steep gradients of 8 and Y, conduction and diffusion dominate convection 
within the flame zone. Explicitly, if the dependent variables 

&(y) = 8 -  1, 6x(y)  = Y ,  

are introduced, this balance can be written 

Ld+/dT, = - hx(A + ax) e2/ (A + 26L), 

d2X/dy2 = &y(A + ax) e7/(A + 2SL), 
( 6 4  

( 6 b )  

where the right-hand sides are the Arrhenius expressions for reaction rate, evaluated 
in the limit 6 --f 0 (Ludford 1977a, b). The factor x ( A  + ax) corresponds to the term 
& Y, that appears in the rate expression for bi-molecular reactions (see (1)).  The factor 
e* shows the exponential dependence of reaction rate on temperature. It is because of 
the latter that the flame region is truly thin. 

Equations (5a, b) are analogous to Ludford’s (19773) equation (12a),  into which the 
laminar flame speed 

(6) 

has been inserted. D(T,) is the Damkohler number (Ludford 1977a, equation (4.6)). 
It may be thought of either as the ratio of reaction rate to thermal diffusion rate, or 
as the non-dimensionalized product of thermal diffusivity and squared ambient 
pressure. 

If the solution to (5) is to match asymptotically to the steady solution to (3) we 
must have 

ui = 2D(T,) (Ld2(A + 26L) CJT, - T-m)/Q) e-*a/T* 

(7) I lim dT/dy,  dxldy = lim d8/dx, d YIdx; 
9+* 21-51 

tim dr/dy, dx/dy = lim deldx, d Y ldx .  
n+-w x t  -9.2 

Thus an evaluation of [d~ldq] and [dxldq] is equivalent to an evaluation of [d8/dx] 
and [d Yldx]; it provides the jump conditions being sought for Y and 8. 

Adding (5a) and ( 5 b )  shows that L T + X  must be of the form ay +b. The necessity 
that the  reaction-zone solution match with the upstream preheat-zone solution re- 
quires b = 0. The matching conditions (7) determine a. Introducing the notations 

X J  -x t  5t -xr 

we find T + X / L  = s+y. (8) 

s+ = lim de/dx,  s- = lim deldx, 
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Eliminating x between (5a) and (8) gives 

The boundary conditions for (9) are obtained by matching with the outer solution 
(see (7)). They are 

a7 
-+S++O(6) (7 + a), 7 + S s _ 7 + O ( 6 )  (7 + -CO). (10) d7 

It will become clear below that satisfaction of (10) is possible only for certain values 
of xi. Thus xf is an eigenvalue for the problem (9) and ( 10). 

The solution to (9) will be obtained for two cases: the adiabatic flame, with 8+ = 0, 
and the unimolecular reaction, with A % 6. Before considering these cases, we discuss 
the outer, preheat-zone solution, in order to find expressions for s+ and s-. 

Preheat-zone solution 

The preheat zone is that region, in front of and at the back of the flame, across which 
the temperature rises to its value a t  the flame. For the y- and t-independent, steady 
flame presently being considered, this region is governed by the following simplifica- 

(11) I 
tion of (3) : 24x a e p x  + aae/ax2 = 0, 

2L4xdY/dx+d2Y/dx2 = 0. 

A solution to (11)  satisfying (4) and the boundary conditions at 1x1 = co and at 
x = --,is 

(x > -xi). I e = em + (1  - em) erfc (@x)/erfc ( - #)xi) 

Y = O  

From the solution for ewe determine 
S+ = 2(e, - 1) (4/7~)* e-W/erfc ( - @xi),} 

s- = 2(4/ 4 e-+!/erfc (@xi). 

Equation (13) provides explicitly the boundary conditions (10). For fixed rate of 
strain 4 and downstream temperature Om, both s+ and s- are determined by xf. It 
is for this reason that (9) and (10) have a solution only for certain values of zf; if, 
indeed, they have a solution at  all. 

After the eigenvalue problem (9), (lo), (13) has been solved for the flame position, 
the supply concentration can be found directly from (7) and (8). Thus, differentiating 
(8) with respect to 7, letting 7 +-m, using (7),  and inserting (12a), 

(13) 

Now, the usual (i.e. in the absence of straining flow) adiabatic flame temperature is 
just T-, + Y-,(T, - T-,), recalling the present non-dimensionalization (2). If this 
temperature is denoted by To, (14a) can be rearranged to read 

Equation (14a) provides the supply concentration required to maintain the given 
flame temperature. Equation (14b). gives the actual flame temperature T* for given 
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FIQURE 2. Showing flame speed vs. rate of strain for various Lewis numbers. The dashed lines 
are the asymptotes m --f (1-2#), # + O  and m 3 am-#, # + in. 

adiabatic temperature To. In the direct problem To, rather than T,, is known. The 
connection (14b) between To and T* will be used later to obtain a solution to the direct 
problem by rescaling the solution to the inverse problem. 

Adiabatic flame 

We now proceed to integrate (9) in two special cases. In the adiabatic case 0, = 1;  
this case also might correspond t o  the flow towards an insulated wall in figure 1.  
The adiabatic flame in straining flow was considered by Klimov (1963) and by Buck- 
master (1979). We include it here mainly to illustrate our inverse approach, and to 
show how it compares with the direct approach. 

Inverse problem 

When 0, = 1, s+ = 0, and (9) becomes autonomous. We now have 0 = 1 for x > - x i ,  
which implies that T + 0 as ?,I + co (see the definition of T above (5)). Additionally, 
(7) requires that T 3 - co as ?,I + - 00. Setting s+ = 0 in (9), multiplying by dT/dy, and 
integrating with respect to T between 0 and - 00 gives s? = 1 or s- = 1,  or 

(15) (n/$)terfc ( $ 4 ~ ~ )  e$zf = 2. 

Equation (15) determines xf as a function of $. Because the flow velocity nornial to 
the flame at  - x f  is - yZr, we can defme a nondimensional flame speed as m = yZf/uL 
= 2$xf.  Therelation (15) is plotted in figure 2 as mvs. #. It isshown by the curve labelled 
L = 1.0, with its asymptotes m -+ 1 - 24, $ -+ 0 and m -+ in - $ 7  $ -+ in. When # 
becomes greater than in the flame speed becomes negative. Williams (1  975) noted 
that these negative flame speeds are consistent with activation-energy asymptotics, 
while Buckmaster (1979) hypothesized that they are unphysical. 

In an axisymmetric flame it is not possible for the flame speed to become negative 
with large straining; something else must happen. In  appendix A we show that large 
rates of strain will extinguish an axisymmetric flame. 
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FIGURE 3. Ratio of actual to adiabatic flame temperature plotted w8. rate of strain, 
for the Lewis numbers labelling the curves. 

The relation (15) is labelled L = 1 in figure 2 because it solves the direct problem 
when L = 1. It solves the inverse problem for all L (i.e. it shows flame speed v8. strain 
at fixed flame temperature). Where this curve is relevant, straining flow reduces flame 
speed - a result found previously by Klimov (1963). A combustion wave propagates 
by the forward diffusion of heat, through a preheat zone. The straining flow counter- 
acts the diffusion, thinning the preheat zone and slowing the flame (Williams 1975). 

Direct problem 
If L is different from unity, the solutions to the inverse and direct problems differ. 
The solution to the direct problem is a plot of m, = yZf/ut  us. 9, = KY/U?, where 
u; is the flame speed (6) evaluated at the adiabatic-flame temperature To. The mapping 

(16) 

(9, m, ($0, m,) J given by 

($0, mo) = ((%/ui)2 $ J  (‘L/&) m),  
provides this solution to the direct problem by rescaling of the solution to the inverse 
problem. This rescaling can be effected because To is given as a function of T, by (14 b) .  

8. If the constant property 
assumption is used, then from (6) 

For convenience, consider the case T-, 4 To, T, and A 

(uL/ut)2 = (T,/To)2 e(T*-To)/(T**o), (17) 

where 8, = To/T,. (The pre-exponential factor of (T,/T0)2 in (17 )  is not particularly 
significant; the major dependence of flame speed on temperature comes through the 
exponential.) The solution (lab) for T,/T, determines the right-hand side of (17). 

In figure 2 we have used (14b), (16), and (17) with 8, = 0.1 to plot m, v8. $,, for 
various L. In  figure 3, T,/T, is plotted us. 4,; this will help in understanding figure 2. 

For L < 1, TJT, increases with straining. Therefore, so does uL/u;. Indeed, if 80 
is small enough m, = muL/ut will also increase initially with straining, even though 
m decreases. This is shown by the curve labelled L = 0.75; it agrees with Buckmaster’s 
(1979) result that straining can increase flame speed if L is sufficiently less than unity. 

When L > 1 , T,/T, decreases with straining. This decreases uL/u2, which eventually 
tends to zero. Thus, a given value of $, is obtained from two values of 4, one small 
and one large (see (16)). Of course, this means that curves of m, w8. 4,’ and of T,/T, 
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vs. do, must be double-valued. The curve labelled L = 1.5 in figure 2, and the curves 
labelled L = 1-26 and 1.175 in figure 3, are examples of double-valued functions. All 
curves with L > 1 will have a maximum #, beyond which no solution exists. The 
absence of solutions at  large #, can be interpreted as extinction of the flame by large 
strains. This interpretation was first made by Sivashinsky (1976). Furthermore, it 
was shown by Buckmaster (1979) that the lower solution branch in the double-value 
region is unstable (however, see the present stability analysis). 

Extinction can occur with m, greater or less than zero, depending on the value of L. 
It can be found numerically that with 8, = 0.1 extinction first occurs with m, > 0 
when L = 1.33; at smaller L, it occurs with mo < 0. In  his asymptotic analysis, 
restricted to L- 1 = 0(8,), Buckmaster found that extinction with mo > 0 first 
occurred at L = 1/(1-4d0). With 8, = 0.1 this gives L = 1.67; a value somewhat 
higher than the present value. 

The extinction that occurs when L > 1 is due to a reduction in flame temperature, 
but not to heat loss per se. Straining steepens gradients of temperature and reactant, 
causing the heat flux out of the flame to increase more than the reactant flux into the 
flame. This lowers the flame temperature and leads to extinction. It turns out that 
downstream heat loss combined with straining is a more powerful extinction mecha- 
nism, as we shall now show. 

Flame with downstream heat 1088 

Previous analyses of flames in straining flow have dealt only with adiabatic flames 
(Klimov 1963; Sivashinsky 1976; Buckmaster 1979). Heat loss is often incorporated 
into flame analyses by a radiative model (Buckmaster 1977; Joulin & Clavin 1979); 
diffusive heat loss to boundaries is modelled by a linear radiative term. In  the present 
analysis downstream diffusive heat loss is more properly incorporated. However, one 
expects qualitative similarity between our results and those that would be obtained 
from a radiative model. 

For convenience, let A $ 8, so that (9) simplifies to 

d%/dy2 = 4(7 - s+ y) eT. (9a)  
The solution to (ga),  satisfying (10) with s+ and s- given by (13), determines x; as a 
function of # and 8,. 

Because (9a)  is non-autonomous, it can only be solved numerically. Numerical 
solutions to (9a) were obtained with a fifth-order Runge-Kutta routine, available on 
the NASA Lewis IBM 37013033 computer. xf was obtained by iteration; the iterations 
were done manually through the time-sharing system. The boundary conditions 
were applied at finite values of y, but it was checked that the limits of integration were 
sufficiently large to be considered infinite. 

Solution to the inverse problem 

In figure 4 x; is plotted versus # for various 8,. In  figure 5 the corresponding ratio 
TJT,, computed from (lab) with T-, = 0, is plotted against # for various 8, and L. 
The curves for 8, = 1 reproduce the adiabatic results. 

One observes that when 8, < 1 xf becomes double-valued, and that beyond a 
critical strain extinction occurs (i.e. a solution for xt ceases to exist). This is somewhat 
analogous to the result that, in the absence of strain, radiative heat loss causes flame 
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FIGURE 4. Flame position ws. rate of strain, with heat loss. Values of Om label the curves; 

8, = 1 corresponds to an adiabatic flame. These curves solve the inverse problem. 

e,= 1.0 

8, = 0.5 

0 . 4 4  
0 0.1 0.2 0.3 0.4 0.5 

FIGURE 5. Ratio of actual to adiabatic flame temperature plotted 08. rate of strain. Each triplet 
of curves was calculated for the Om indicated. -, L = 1.0; - - -, 0.75; - - - , 1.25. 

speed to become double-valued, and that beyond a critical value of heat loss extinction 
occurs (Buckmaster 1977). Further analysis shows that the lower branch (slower flame 
speed) of the double-valued solution cannot be realized because it is unstable (Spalding 
1957). We have not analysed the stability of the lower solution branch in figure 4, 
but it seems reasonable to expect it also to be unstable. 
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FIGURE 6. Same as figure 4, but these curves solve the direct problem for L = 1.0. 

Direct problem 

The upper solution branch in figures 4 and 5 represents it perturbation to the adiabatic 
flame; the lower branch may be unphysical, as mentioned above. We will therefore 
consider the direct solution on the upper branch only. 

Again, (16) and the temperature ratio plotted in figure 5 are used to rescale the 
inverse solution curve (figure 4). The result, with L = 1 and 8, = 0.1, is plotted in 
figure 6. As in the adiabatic case with L > 1, the reduction in flame temperature with 
straining causes the transformation of # -+ #o to be two-to-one. Hence the curve of 
do versus xf has a maximum, and extinction occurs at large rates of strain. With 
finite heat loss, extinction can occur at any Lewis number. For given Lewis number, 
the critical strain increases, and the flame position at extinction decreases, as 8, 
increases toward unity. 

(The values of 8, given in figure 5 are normalized by the actual flame temperature 
T*. Thus their absolute value varies somewhat with strain rate. However, TJT, is 
not greatly different from unity on the upper solution branch, and the curves of 
figure 5 would not be very different were 8, normalized by To.) 

3. Stability of the flame h a w ,  zee. TFw 117 rv pJ67 
In  this section we will consider the effect of straining flow on the stability of adiabatic 

flames. We realize that heat loss can have a destabilizing influence on flames (Joulin 
& Clavin 1979; Sivashinsky & Matkowsky 1981); however, the effect of strain is best 
studied, initially, by isolating its effect from that of heat loss. In  his 1979 paper, 
Buckmaster did a preliminary analysis of stability to one-dimensional perturbations 
of flames in straining flow. Here we will consider three-dimensional, cellular perturba- 
tions, as these are an often-observed form of flame instability (Lewis & von Elbe 1951). 

The stability of a plane flame in the absence of flow waa examined by Sivashinsky 
(1977). He showed that the flame was unstable when L < 1 - 26. The approach used 
by Sivashinsky in his analysis is quite unconventional. He adopted a co-ordinate 
system based on the perturbed flame front at  the outset of his analysis. Hence his 
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lowest-order solution was a function of the perturbation, and was not the unperturbed 
state usually taken as the lowest order in stability analyses. Because of this approach, 
Sivashinsky's first-order problem required solution of an inhomogeneous differential 
equation. Sivashinsky's approach is quite correct when applied consistently; however, 
we will adopt a more conventional attitude, thereby avoiding the difficulties of solving 
inhomogeneous equations. In  appendix B it is shown that in the limit 9 + 0 the 
present stability analysis agrees with that of Sivashinsky. 
We consider a perturbation to the flame front, of the form 

XI = -xf+sewt+i~"f( ly) ,  
where f (Zy) satisfies 

d2f /dy2-2#ydf /dy  = -1y. 

This, rather particular, form for f (Zy) is convenient and adequate for the purpose of 
stability analysis. The perturbation is taken to be periodic in the third dimension, z. 
We also let 

(18b)  

( 1 8 4  

I 
I 

0 = 8(x)+E8~O(x)ewt+i"f(Zy) (z < - x f ) ,  
8(x)+E81~(x)ewt+iqzf(Zy) (x > -xt), 

Y = Y(x)+eyy,Y'(x)ewt+i~zf(Zy)  (z < -XI), 

0 (x =- - 2 1 )  

be the perturbed temperature and concentration. 8 and Y are the unperturbed 
solutions given in 0 2 ,  and the functions 0' and Y ', upon which the perturbations depend, 
are to be determined. It will be necessary to require the perturbation amplitude to 
satisfy E < 8 :  this requirement is perfectly justified, because only linear stability is 
being considered. 

Modified jump conditions 

The jump conditions must be reconsidered as they apply to the perturbed flame. 
The equations (4) are unaltered, although they must be applied a t  the perturbed 
flame front (180). The adiabatic jump condition [d8/dx] = -s- = - 1, given above 
(15), is altered because 7(7) no longer tends to zero as 7 tends to infinity, as was assumed 
in the derivation of this condition. Indeed, matching the flame region to the preheat 
region now gives 7(7) -+ ( e / 8 )  Olewt+iqz f (Zy) as 7 + 00; where it is assumed that #(z) 
h a  been normalized such that Or( - xf)  = 1. As 7 + 00, x still tends to zero. Therefore 
(8) is modified to 

(19) LT + x = Le/88,eut+i*zf(ly). 

One finds (50 ,  b)  to be unaltered by the perturbation. Substituting (19) into (5a, b) 
and integrating, using the fact that 7 still tends to  - 00 as 7 tends to - CO, gives 

[dO/dx] = - (1  + (s /26)  O,ewt+igzf(Zy)), ( 2 0 4  

[aY/dx]  = -L[dO/dz] ,  (20b)  
to first order in E .  

The present derivation of the perturbed jump conditions (20a ,  b )  is a bit sketchy. 
A lengthy derivation can be found in Matkowsky I% Sivashinsky (1979); the jump 
conditions (200, b )  correspond to their equation (60). 
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Stability analysis 

To perform the stability analysis, we now require explicitly the functions W ( x )  and 
Y ‘ ( x ) .  Substituting (18b) into ( 3 )  gives 

aw/axa+ 2 $ x a e y x -  (ka+ w )  8’ = 0, ( 2 1 )  

where k2 = P+qa.  We require a solution to ( 2 1 )  with 8’( - X I )  = 1 and 8’ +- 0 as 
1x1 += oc), for all $. Such a solution is 

where a = 1/2$xi = 2$m-2 and K = ( k 2 + w ) / $ .  Similarly, 

where K = (k2+  wL)/$L. Here U(a,  b) are the parabolic cylinder functions defined by 
Abramowitz & Stegun (1965, equation (19 .5 .4) ) .  Next, the constants B0, 8, and yo 
in (18 )  must be determined from the matching conditions. The procedure is illustrated 
for yo. 

To first order in E ,  a t  the perturbed flame front 

Y(xi)  = Y (  - x f ) + ~ e w t + i * z f ( l y ) d Y / d x I - x ~ .  

Thus, the condition “€7 = 0 gives 

yo = 2 ~ ( $ / n ) t  e-+i/erfc ( $ b r ) ,  

o0 = 8, - 2($/n)* e-+x:/erfc ( $ ) X I ) .  

( 2 4 )  

having used the results of Q 2 to evaluate d Y / d x .  Similarly, [@I = 0 gives 

(25 )  

The condition (20b)  and the solution, now known, for YP then gives 

- 4 = 2 ( ~  -p3)  ($/n)* e-@;/erfc ($*xr) 
26m 

again, having evaluated d Y / d x  at the perturbed flame front to 
(26 ) ,  and in what follows, we defme 

U(K‘ - 4, (&/a)*) 

U ( K  - +, a+) 
U ( K  + 4, a-*) ’ 

U ( K  - 4, - a+) 
U ( K  + 4, - a-t) ’ 

the superscripts + and - indicating x 1 -x i  and x 1 - xf. 
I 

(26 )  

obtain d Y / d x .  In  
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FIQURE 7. The stability boundary, 2Srn 88. k/m, for a = 1.0, L = 1.25, 

0.8 and 0.5, and for a = 0.0, L = 0.9. 

O,, el and yo have now been determined; yet ( 2 0 a )  is still to be satisfied. Clearly, this 
condition requires a dispersion relation between k and w to exist. In the notation of 
( 2 7 )  this dispersion relation is 

( 2 8 )  
l -L+P,-P,  

( L  -P3) (P1-P2).  
26m = 

In appendix B it is shown that as q5 --f 0 

( 2 9 )  1 p 3  --f &L( 1 + [ 1 + 4(wL + k2)/L2]*}, 

P l  -+ 1 - P2. 

pz --f +{ 1 + [ 1 + 4(w + k2)1*}, 

Equation (28) then reducefi exactly to the result of Sivashinsky (1977) .  (Remember 
that m = 1 when q5 = 0.) Sivashinsky found that, for realistic values of L and 6, 
instability occurred with w real. (He found an instability with w complex, but that 
occurred for values of L and 6 inappropriate t o  most gaseous combustion.) Hence 
we will consider the stability boundary found by setting w = 0 in ( 2 8 ) .  One plots ( 2 8 )  
in the form of 26m against k, at fixed L and a, to find this neutral stability boundary. 
This has been done in figures 7 and 8. Figure 7 shows results for a = 1 (corresponding 
to # = 0 . 2 2 )  with L > 1 and with L < 1. Included for comparison is the curve for 
a = 0, L = 0 . 9 :  it intersects k = 0 at 26m = 1 - L = 10( x p3  and p 2  are always 
greater than one, while the numerator of ( 2 8 )  is O( Therefore, in order to calculate 
the curves in figures 7 and 8 ,  p3  and p ,  were required accurate to four decimal places. 
The five-decimal tables of Abramowitz & Stegun were used for these calculations. 
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FIGURE 8. The variation of the stability boundary aa a varies; L = 0.6. 
klm 

0.002 

The right-hand side of our result (28) is zero when L = 1, so when L- 1 = O(6) that 
equation is valid in a formal asymptotic sense. (Similarly, it is formally valid when 
L > 1 and a = 0(6), or when L < 1 and a-) = 0(1/6).) However, in any real flame 6 
will be small but finite, and L will not be a function of 6. We have, therefore, chosen 
to write our dispersion relation in the form (28), and to interpret it as an approximation 
valid for small 6. Strictly speaking, then, our analysis is not based on formal asympto- 
tics, but relies on a thin-flame model. It is fortunate, perhaps, that the right-hand side 
of (28) turns out to be so small. The left-hand side is assumed small in the thin-flame 
approximation; thus (28) could only be consistent if the right-hand side were small. 

Discussion of stability results (inverse m e )  
It might be helpful to think of 8 aa a variable parameter, which determines whether 
or not the flame is stable. Thus, with a = 0, and L < I ,  the flame is stable provided 6 
is sufficiently large. As 6 is decreased paat jg( 1 - L)  long-wavelength (k = 0 )  perturba- 
tions become unstable. Further decrease of 8 is accompanied by a widening band of 
instability, although very-short-wavelength perturbations remain stable. 

Now consider the effect of strain (a + 0 in figures 7 and 8). Instability still occurs 
when 8 becomes sufficiently small, but it appears at considerably smaller values of 8 
than in the absence of strain, and at finite wavelength; straining reduces the critical 
value of 6 by suppressing the Zong-wave instability. (The ordinate in the figures is 26m, 
but figure 2 can be used to  convert this to  8.) Since 8 might typically be 0.05 to  0.1, 
figures 2 and 7 show that moderate straining will make the premixed flame stable to 

6 FLM I11 
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ff 

FIOWFCE 9. Value of 26 at  the intersection with k = 0 of the stability boundary, for the L 
indicated, vs. a. All L are greater than unity because this intersection ie negative when L is 
less than unity. 

perturbations. For instance, with L = 0.8 instability occurs if 6 < i( 1 - L )  = 0.1 
when u = 0.0, and if 6 < 0.0055 when a = 1.0. Figure 8, constructed for L = 0.5, 
shows that the flame has become stable for all 6 above 0.07 with a as low as 0-2 (this 
a corresponds to q5 = 0.073); the larger strain, u = 1-0 (d = 0.22), makes the flame 
stable down to 6 = 0.02. Note that, when u = 0-0 and L = 0.5, instability is predicted 
at 8 = 0.25; this value may be a bit large to be strictly consistent with activation- 
energy asymptotics. 

A long-wave instability does still occur in the presence of finite straining, but now 
it appears when L > 1 ,  as shown by figure 7. In figure 9 the intercept of the long-wave 
stability boundary with k = 0 has been graphed. For clarity, the stability boundary 
is shown here as 26 against a, for various L > 1. From figure 7, one can see that this 
intercept of the stability boundary with k = 0 is the critical value of 8 at which insta- 
bility first occurs. As u -+ 0 the curves in figure 9 tend to (26),, = 2a(L - l ) ;  as at + a, 

The long-wrt-;e instability with L > 1 seems to correspond to the one-dimemiom1 
instabilities discussed by Buckmaster ( 1979). Buckmaster associated these with the 
lower solution branch of the steady flame (cf. figures 2 and 3). However, there is no 
unique connection between the instabilities found here and the lower solution branch. 
For reasonable values of 6, the instability occurs on the lower branch, but not all the 
branch is unstable; e.g. with 8, = 0.1 and L = 1-5 the point (9, = 0.058, m, = 0.10) 
lies on the lower branch, while the corresponding 26 = 0.17 is in the stable region of 
figure 9. 

In an experiment it might be difficult to reach the region of long-wave instability 
directly; however, by increasing fuel concentration along with strain, to maintain a 
constant flame temperature, one could conceivably reach this state inversely. It would 
be signalled, for instance, when a small increase in reactant caused a disproportionate 
increase in flame temperature. 

(28),, -+ (Lt -  1) /2L&. 
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Rescaling to the direct case 

The individual curves of figures 7 and 8 are for given L and #. Hence each curve is 
for a fixed value of T,/To, and rescaling involves simply multiplying by an appropriate 
constant. Therefore, rescaling to the direct problem will not change the shapes of 
these curves, as did thenonlinear rescaling in $ 2 .  Furthermore, aisnon-dimensionalized 
by K ;  i.e. it is independent of uL. Thus (with the present constant-property approxima- 
tion) a has the same value in the direct and inverse problems. The only question that 
arises is whether, when 8 is rescaled to a,,, strain will remain stabilizing for L < 1. The 
answer is that it will. 

Because a = 2#m-2 is a unique function of # (which can be found from the L = 1 
curve of figure 2), the analysis of $ 2 gives T,/To as a function of a. Thus the previously 
found critical values of 8, as a function of a ,  could equally have been written as 
8, = ST,/T,, as a function of a (recall our assumption that*T-, < T,). Now To < T, 
when L < 1 and # > 0, so the critical value of a0 is less than that of 8; strain i.9 even 
more stabilizing in the direct problem than in  the inverse problem. Corresponding to the 
cases cited above, and in figures 7 and 8 ;  with L = 0.8 and a = 1.0 (80)cr = 0.0052, 
with L = 0.5 and a = 0.2 (80)cr = 0.062, with L = 0-5 and a = 1.0 (80)cr = 0.017. 

Because figure 9 shows (24,. ws. a ,  the shapes of its curves would be different if 
rescaled to (28,),, = T0/T,(28),, ws. a. However, because To > T,, when L > 1 
(80)cr > a,,, the conclusion that straining can produce instability is unaltered. 

Disct~sion 

To conclude this section on stability, we discuss its physical mechanisms. The cellular 
flames, occurring when L < 1, are a consequence of the diffusion of reactants across 
corrugations of the flame front. (This has been known for some time - see Lewis & 
von Elbe ( 1951) .)Reactant diffuses fromunreacted regions into the higher-temperature 
reacted regions and, upon being consumed, increases the temperature in these regions 
still further; this is illustrated by figure lO(a). Consequently, perturbations of the 
flame front are amplified. Of course, this picture only holds when the reactant diffusi- 
vity is larger than the thermal diffusivity (L < 1). In the converse situation, heat 
diffuses from the reacted parts of the flame, increasing the temperature, and hence 
the reaction rate, in the unreacted regions. The net effect is then to cool the heated 
regions and heat the cool regions. The perturbation is suppressed. 

These mechanisms apply when transport is solely by diffusion. In  straining flow, 
the fluid motion transports heat and reactants at an equal rate, reducing the de- 
stabilizing effect of differential diffusion. In  fact, with k2 + w = 0 in ( 2 1 )  transport is 
solely by fluid convection; this democratic process precludes the diffusional mechanism 
of instability. 

The long-wave instability, which occurs in straining flow with L > 1, does not rely 
on corrugations of the flame front. Instead, it is the steep gradient of Y which results 
in instability (figure lob). When the flame position is perturbed, a large reactant per- 
turbation occurs, increasing, or decreasing, the reaction rate in the flame. If 8 is large 
enough the perturbed reaction rate is balanced by a perturbation of diffusive heat 
flux from the flame. However, if 8 is small, the perturbed heat flux will not be sufficient 
to balance the change in heat released from reaction. Then the flame temperature 
rises (or falls), further increasing (or decreasing) reactant consumption. Since one 

6-2 
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FIGURE 10. (a) Illustration of the mechanism of short-wave instability. The lengths of arrows 
indicate relative magnitude of diffwivities. (a) Exaggerated profiles of temperature and con- 
centration for L > 1. The steep Y-gradient near the flame is the source of long-wave instability. 

expects this mode of instability to occur on the lower branch of curves such aa that 
with L = 1.25 in figure 3 (Buckmaster 1979), a rise in flame temperature will stop when 
the upper branch has been reached. On the other hand, a decrease in flame temperature 
will lead to extinction. 

The stabilizing and destabilizing effects of strain were demonstrated here by evaluat- 
ing numerically the dispersion relation (28). The generality of our conclusions was not 
rigorously investigated, but, clearly, they hold in an experimentally realizable regime. 
In  support of this statement, the following section compares deductions from our 
analysis with phenomena recently observed by Ishizuka et al. (1981). 

4. Comparisons with experiment 
Our results are in striking concord with the observations of Ishizuka et al. (1981). 

This is satisfying because our results were obtained without prior knowledge of their 
experimental confirmation, and because the agreement vindicates our use of the 
constant property approximation. 

In the experiments by Ishizuka et al. a propane/air flame was stabilized in flow 
stagnating on a wall. They varied both straining rate y and laminar flame speed uL; 
the latter by adjusting propane concentration. It was found that, when 4 was in- 
creased, either by increasing y or by decreasing uL, the flame moved toward the wall. 
As the wall temperature was increased, the flame moved away from the surface, in 
agreement with figure 6. Admittedly, these observations require little theoretical 
explanation. 

Extinction away from the wall was observed experimentally at large rates of strain 
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(figure 6). Alternatively, at fixed rate of strain, the flame could be extinguished by 
decreasing fuel concentration in lean flames, or by increasing fuel concentration in rich 
flames; since uL decreases away from stoichiometry, both these changes increase #. 
By increasing the wall temperature, the extinction limits were increased, as figure 6 
leads one to expect. 

We suggested previously that, because a-l = 2#$ is non-dimensionalized by K, it 
should be far less sensitive to small changes in flame temperature than quantities non- 
dimensionalized by uL. Thus its value at extinction ought nearly to be independent of 
L and #; it should depend only on rate of heat loss. Ishizuka et al. measured the value 
of a-l at both lean and rich extinction for various rates of strain. At the lean limit they 
found that a-1 was indeed constant. At the rich limit, however, a-l was found to 
increase with straining, tending asymptotically to the lean limit value. This is not 
explained by the present theory; Ishizuka et al. thought it might be due to increased 
heat loss at the rich limit. 

A further point of agreement between theory and experiment is that in rich flames 
(L c 1) flame temperature decreased with straining. Without heat loss the opposite 
trend is expected; however, the maximum wall temperature which could be achieved 
experimentally was about 2 of the flame temperature. Hence the curves in figure 5 
with 6, < 1 explain the observations. Further comparisons show good agreement 
between experiment and the steady-flame theory described here, in Klimov (1963) 
and in Buckmaster (1979). 

The present stability results also agree with experiment. In  rich mixtures, corru- 
gated flames were observed at small rates of strain. Upon increasing strain rate, a 
sharply defined transition to a smooth flame occurred. Furthermore, the strain rate 
at transition decreased as mixture ratio was increased (i.e. as uL was decreased). 
These observations confirm our deduction that cellular instability is suppressed a t  a 
critical value of #. Even the magnitude of # a t  transition is in line with the present 
theory. With a mixture ratio of 1.3, transition occurred at y = 47 s-l (figure 2 of 
Ishizuka et al. 1981). Taking K = 5 cm2/s (its value at 1500 "C) and u: = 30 cm/s 
(figure 218 of Lewis & von Elbe 1951) gives #o = 0.13. Upon increasing the mixture 
ratio to 1.5, the critical value of y decreased to 26. If the critical value of #o is assumed 
to remain equal to 0.13, u: must have decreased to 22 cm/s; which is eminently 
reasonable. 

Appendix A. Axisymmetric straining flow 
In this appendix we consider an adiabatic flame with L = 1, in axisymmetric 

straining flow. For this flame the inverse and direct formulations are identical. 
Although the situation envisaged here might be hard to produce in its purest form, it is 
an approximation to a flame stabilized in the rear of a streamlined, axisymmetric body. 

In axisymmetric flow, (1 1) becomes 

where the flow is from r = co towards r = 0; i.e. U, = - yr, U, = 2yz. Because the 
reactants are brought from co by the flow, boundary conditions to (A 1) are B(m) = 0, 
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FIGURE 11.  Flame speed and position v8. rate of strain for an axisymmetric flame. 

Dashed line is the asymptote m -P 1 - 4g5, q5 --f 0. 

8(ri)  = 1 and [dO/dr] = - 1 at r = r f  (assuming ri S 6). The appropriate solution to 
(A 1) is 

where El is the exponential integral (Abramowitz & Stegun 1965, equation (5.1.1)). 
The jump condition [dO/dr] = - 1 then gives 

irfeMEl(ghf) = 1. (A 3) 
In  figure 11 rf and m = 24rf are plotted versus q.5. For given q5 c 0.1125 there are two 

equilibrium flame positions, one with rf > 1.6 and one with rf < 1.6. There are no 
solutions with q5 > 0-1 125. Thus an axisymmetric flame can be extinguished by large 
strains when L = 1. 

Appendix B. Evaluation of p i  as u + 0 

We consider the behaviour of the pi defined by equation (27) as a -f 0 with k = O( 1). 
Then the parabolic cylinder functions in (27) can be approximated by applying 
stationary phase to their integral representations (Abramowitz & Stegun 1965, 
equation (19.5.4)). It is important to note that, although two points of stationaryphase 
exist, the integration contours are such that they can be deformed to pass through 
only one of these points. For example 
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(the contour e is shown in Abramowitz & Stegun 1965, figure (19.3)) has stationary 
phase a t  

Z~ = +{I f [1 + 4 ( k 2 + ~ ) ] f } ,  

but only z+ can be reached by the contour. Straightforward evaluation now shows that 
as a --f 0, with k such that k z / a  + 00, 

p 3 +  ~ L { 1 + [ 1 + 4 ( k 2 + w L ) / L 2 ] * } ,  

~ ~ + a { i + [ 1 + 4 ( k ~ + ~ ) i * } ,  

P3 + 1 - Pz- I 
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